skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ferraro, Andres"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As recommender systems are prone to various biases, mitigation approaches are needed to ensure that recommendations are fair to various stakeholders. One particular concern in music recommendation is artist gender fairness. Recent work has shown that the gender imbalance in the sector translates to the output of music recommender systems, creating a feedback loop that can reinforce gender biases over time. In this work, we examine whether algorithmic strategies or user behavior are a greater contributor to ongoing improvement (or loss) in fairness as models are repeatedly re-trained on new user feedback data. We simulate this repeated process to investigate the effects of ranking strategies and user choice models on gender fairness metrics. We find re-ranking strategies have a greater effect than user choice models on recommendation fairness over time. 
    more » « less